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We discuss the computational problem encountered in making direct variational 
calculations of the reduced density matrices of many-particle systems. The problem is one 
of minimizing a linear function within a convex domain defined by a finite set of non- 
linear constraints. Two different algorithms are presented for which working programs 
have been written. 

1. INTRODUCTION 

In recent years a method has been developed for calculating the one-particle and 
two-particle density matrices of a many-particle system directly, without first 
constructing the system wavefunction [l-6]. We shall call that method the density 
matrix method. In this paper we shall describe two algorithms which have been 
successfully employed to solve certain difficult nonlinear minimization problems 
peculiar to the density matrix method. The computational techniques may have 
applications in other areas involving nonlinear programming problems. 

2. THE DENSITY MATRIX METHOD 

The ground state energy of a many-particle system with one- and two-body 
interactions may be written as a linear function of the one-body and two-body 
density matrices of the ground state as follows. 
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where 

Yii = CL? I %+ai I g>, 

ri,?d = (g I alfakfaiaj I g>, 

(2) 

(3) 

and 1 g) is the many-particle ground state. Given a pair of matrices y and r, any 
many-particle state I g) which satisfies Eqs. (2) and (3) is termed a representation 
of the given density matrices. A pair of density matrices (y, r) for which at least 
one representation exists is said to be representable. In the density matrix method 
the linear function E is minimized with respect to the elements of the matrices y 
and r subject to certain constraints called representability conditions which 
guarantee that the density matrices allowed in the minimization procedure are at 
least close to representable ones. (Two density matrices are said to be close to one 
another if they give similar expectation values for all physically important one- and 
two-body operators.) 

The representability constraints that were utilized in the calculations to be 
described were of two forms; (a) a finite set of linear equalities, and (b) a finite 
set of nonlinear inequalities. The linear equalities are consequences of the known 
symmetry properties of the ground state of the system. If a pair of density matrices 
(y, r) is representable by a wavefunction with certain known symmetry properties 
such as 

mg?=wg? (4) 
and 

Lz I g> = w + 111 g>, (5) 

then corresponding linear relations involving the density matrix and the matrix 
elements of the symmetry operators exist. Thus Eq. (4) implies that 

and 

C rikjlc = CN - I> Yii 
I: 

Tr(y) = N. 

(6) 

(7) 

Similar consequences of angular momentum and spin symmetry can be easily 
derived. For more details the reader is advised to consult Refs. [l, 2, 61. The other 
set of representability conditions is a consequence of the fact that the ground state 
wavefunction is antisymmetric in all variables. Those which we have utilized are of 
the following form. 

(a) The two-body density matrix r must be a nonnegative matrix. That is, all 
its eigenvalues must be nonnegative numbers. 
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(b) The particle-hole matrix Gijkl must be a nonnegative matrix. G is related 
to the density matrices y and r by 

and yij = 6ij - yji is the one-hole matrix. 

3. THE COMPUTATIONAL PROBLEM 

As stated, the computational problem associated with the density matrix method 
has the following form. One chooses a set of variational parameters x1 ,..., xI, 
which are taken to be elements of y, 7, and r. (y and jj are included in order to 
make Eq. (11) valid. The relationships among y, 7, and r are taken into account by 
means of linear constraints.) Of course use is made of the fact that the matrices are 
symmetric and that rijkl is antisymmetric in the indices (i,j) and (k, 1) to reduce 
the number of variational parameters needed. The linear equality constraints then 
impose a number L of conditions of the form 

c Cnaxn f B" = 0, 01 = l,..., L. (10) 
n 

The inequalities have the form of nonnegativity conditions on a set of matrices. If 
we consider the separate matrices r, G, and Q as the diagonal blocks of a block 
diagonal matrix M whose dimension is equal to the sum of the dimensions of the 
three separate matrices, then the three separate nonnegativety conditions are 
equivalent to the single condition that M be nonnegative. The elements of the 
matrix M are linear functions of the variational parameters x1 ,..., x, . 

All eigenvalues of M are constrained to be nonnegative. Since the eigenvalues of a 
matrix are nonlinear functions of the matrix elements for which no explicit formula 
exists these constraints produce a distinctly challenging computational problem. 
The complexity of the problem is enhanced by the fact that any calculation of real 
value in atomic, molecular, or nuclear physics requires a single-particle basis large 
enough to produce from 100 to 300 variational parameters. Thus any method used 
must be capable of operating in very large-dimensional parameter spaces. Two 
computational algorithms which have proved useful in this problem are presented 
in the following two sections. One very favorable aspect of the computational 
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problem is that the region in parameter space defined by the constraints can easily 
be shown to be convex. Thus the minimization problem has a unique solution and 
no local constrained minima exist. 

4. THE PENALTY FUNCTION ALGORITHM 

In the penalty function method one replaces the linear function E(x) = x H,,xn 
by a nonlinear function 

F(x) = c H,x, + P(x). (12) 
n 

The penalty function P(x) is a function which is zero within the region of parameter 
space satisfying the nonlinear inequalities but becomes smoothly and rapidly large 
and positive as x moves out of the allowed region. The particular form of P(x) we 
have chosen is 

NEG 

P(x) = gw c (W, (13) 
n=l 

where A, is the nth eigenvalue of A4 (the eigenvalues are ordered in a nondecreasing 
sequence) and NEG is the number of negative eigenvalues. W is a positive constant 
which should be chosen large enough to keep the result close to the allowed region 
yet small enough not to cause numerical difficulties by making P(x) too rapidly 
varying. 

With this penalty function it is possible to construct at any point an explicit 
second-order polynomial approximation to P(x). This is true in spite of the fact 
that the negative eigenvalues are likely to be nearly or exactly degenerate close to 
the boundary of the allowed region. In the case of degeneracy no single eigenvalue 
can be expanded to second order in x; however, the sum over all degenerate eigen- 
values is an analytic function of the matrix elements. The sum of the squares of all 
degenerate eigenvalues is also an analytic function. The desired quadratic approxi- 
mation for P(x), valid in the neighborhood of any point xlO,..., xKo to second order 
in the quantities x, - x,O, is of the form 

P(x) = s w 1 Pm&n& 7 (14) 

where the coefficients Pm, depend upon xlO,..., x, O. The detailed formulas for the 
calculation of P,,,, are given in a later section. The total function to be minimized 
is thus approximated by 

F(x) = c HA, + tw c Pnrnxmxn . (1% 
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The condition for a minimum of this quadratic approximation, subject to the L 
linear constraints 

1 C,,*x,, + B” = 0, a = I,..., L, (16) 
n 

is that the gradient of F be perpendicular to every vector in the K - L dimensional 
subspace defined by the constraint equations. This gives the following K - L 
linear equations. 

W c Vm~Pmnxn + 1 Vn,“fL = 0, (Y = L + l,..., K, (17) 
m.n m 

where the vectors VL+l ,.‘., VK span the orthogonal complement of the L- 
dimensional subspace spanned by the vectors Cl,..., CL. The computational 
algorithm is as follows. 

1. One chooses some initial value of Wand an initial point x which satisfies 
all linear constraints. If the initial point x is not known to be close to the solution 
of the minimization problem then W should not be chosen too large. Too large a 
value of W will make the penalty function vary very rapidly and it will be necessary 
to take many small moves along the constraint surface to reach the minimum. 

2. One constructs the quadratic approximation to F(x) and determines the 
constrained minimum of the quadratic approximation. If the predicted minimum 
occurs at the pointy one moves to a point z given by 

z = x + a(y - x), 

where OL is chosen by minimizing the function F(z) with respect to CL If the quadratic 
approximation is valid in a region containing x and y then the minimizing value of 
a: will be close to one. In the initial stages of the calculation when the number of 
negative eigenvalues of M is likely to be different at y than at x simply moving to y 
may cause severe overshooting of the minimum and slow the convergence. 

3. With x replaced by z one repeats steps 1 and 2 until a minimum of the 
function F = E + P is found for the given value of the constraint parameter W. 
The value of W is then increased and whole process repeated again. For any finite 
value of W the minimum of F(x) is given by a point outside the allowed region. 
However, as W is increased the degree to which the constraints are violated at the 
minimum of F(x) approaches zero. Thus the point converges to that point which 
minimizes E alone subject to the linear and nonlinear constraints. 
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5. THE QUADRATIC APPROXIMATION 

The following analysis supplies a formula, valid through second order in the 
components of x - x0 for P(x). Let x0 be an arbitrary point in the parameter 
space. The constraint matrix associated with that point is 

MO = Tx”. (18) 

Let iJo be the orthogonal transformation that diagonalizes MO. 

UOA40~0 = /lo, (1% 

where we can assume, without loss of generality, that the eigenvalues of MO are 
arranged in (1O in increasing order. 

fp = 

-P1 

VNEG+l 

VNDIM. 

(20) 

where NEG is the number of negative eigenvalues of MO and NDIM is the dimen- 
sion of MO. Thus none of the first NEG eigenvalues is degenerate with any of the 
last NDIM-NEG eigenvalues. 

At any point x, close to x0, the associated matrix is M and the matrix U”MDo is 
no longer diagonal, but has the form 

A= UOMDO= [: J, 

where Aab and B,, are square matrices of dimensions NEG and NDIM-NEG, 
respectively. (Note: We shall use the convention that the indices a, b, c,... always 
take the values l,..., NEG while the indices r, S, t ,... take the values NEG + l,..., 
NDIM.) E,, is a rectangular matrix of size NEG x (NDIM-NEG). We desire a 
second-order approximation to the sum of the squares of the first NEG eigenvalues 
of II. Let U be an orthogonal matrix which block diagonalizes A to second order 
in the small parameters E,, . 

u/la= 0” ;. [ 1 (22) 
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The matrix U may be written in the form 

where c,, is a NEG x (NDIM-NEG) matrix. The required matrix u is easily seen 
to be a solution of the equation 

Au - vB = E. (24) 

The matrix block C contains the lowest NEG eigenvalues and thus the sum of the 
squares of those eigenvalues is equal to the trace of the square of C. 

c h12 = c (C’),, = c c:, . 
a cl a.b 

(25) 

By referring to Eqs. (21) (22), and (23) we see that 

C = A + +(vc + EC). (26) 

It is clear from the above formula that we need calculate v only to first order in 
small quantities in order to obtain C to second order. We may therefore replace A 
and B in Eq. (24) by their zero-order approximations A& = -&$,I, and B,, = 
VA, . Equation (24) can then easily be solved to yield 

VllT = -%rlQ& + VA. (27) 

Since v, is positive by assumption the denominator can never vanish. However, if 
v, is small the region in which the quadratic approximation is valid may be limited. 
Using the above formula for v,, in Eq. (26) and again neglecting terms of order 
higher than the second we obtain the following expression for the trace of C2. 

Tr(C2) = c A:,, + 2 c pa f& . 
R r 

We must now transform this expression from the representation in which MO is 
diagonal back to the original representation in which A4 = TX is valid. This is 
done by means of the orthogonal matrix Uo. That expression is then transformed, 
by means of the transformation T, into a quadratic expression in the components 
of x. The result is 

h2 = c pmnxmx, 7 (29) 
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where 

and 
(30) 

(31) 

6. THE CUTTING PLANE ALGORITHM 

We shall describe a procedure in which the nonlinear constraints are written as 
an infinite set of linear inequalities. This can be done because the nonlinear con- 
straint defines a convex region in the parameter space. In the proposed procedure 
only K linear equalities and inequalities are ensured in each iteration, where K is 
the number of variational parameters x, . In each iteration one new inequality is 
imposed and one of the old inequalities is discarded. The procedure may be utilized 
in general minimization problems which have the following characteristics. 

(i) The function to be minimized is linear. 
(ii) The allowed region in the parameter space is convex. 
(iii) For each point outside the allowed region it is possible to construct a 

violated condition in a straightforward way. The convergence of the procedure 
depends, however, on how efficiently conditions can be constructed for each point. 

The constraint that the matrix Mij = xn Tij,x, be nonnegative can be written 
in the form that the expectation value of the matrix M with respect to any vector 2 
be nonnegative. 

C ziMijzi z C (ZiTij,Zi) X, > 0. 
ij ijn 

This is an infinite set of linear constraints. The matrix nonnegativity constraint has 
the convenient feature that it is easy to construct for any point x outside the allowed 

FIG. 1. The geometrical illustration of the numerical procedure. 
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region the most violated condition. The most violated condition is obtained by 
diagonalizing the matrix M and by taking the eigenvector .zp” corresponding to 
the most negative eigenvalue Amin. The expression Cijn Zy”TijnZynX, = Amin 
then violates the inequality xijn (ZminTijnLFi”) s, 2 0 by the amount Amin which 
is the maximum possible amount for any choice of ii . Our task is to minimize the 
function E = C’I=, Hixi , where Hi are given coefficients and ?zi are variational 
parameters. The variational parameters must satisfy the following equalities and 
inequalities. 

c Cnax, + B” = 0, a = l,..., L, (33) 
n 

c GBx, + B6 2 0, p = L + l,..., co. (34) 
n 

The coefficients of equalities C,= and B” are given in advance, while the coefficients 
of inequalities C,B and B6 are generated in consecutive iterations. 

The algorithm is as follows. 

(i) In the zeroth iteration, the function E is minimized with the constraints 
I, < x, < u, . The lower and upper bounds Ii and ui are given in advance. One can 
choose any bounds which reasonably confine the range of parameters. However, 
they should be implied by the constraints (34). These bounds serve only to find the 
initial point 

X, O= ! In if H, 3 0, 
!u, if H,, -c 0, (35) 

and they are gradually discarded in consecutive iterations. The geometrical picture 
of these bounds is a rectangular box containing the allowed region. The point x0 is 
the lowest vertex of this box, where we define the upward direction by the vector H. 
The vertex x0 is the intersection of K hyperplanes which are faces of the box. There 
are K edges pointing upward from the vertex x O. Each edge is the intersection of 
K - 1 hyperplanes defining the vertex x O. They are easily constructed for the 
rectangular box 

&, = 1-f)’ if H, 3 0, m = l,..., K, 
mn if H,, < 0, 

where dz, is the nth component of the mth edge. The signs are chosen so that all 
edges point upward (C H,d&, > 0). 

(ii) The equalities are imposed one in each iteration by intersecting the edges 
with the corresponding hyperplane and choosing the lowest intersection. The 
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consecutive iterations will be indexed by the integer v. The distance from the point 
~“-1 to the mth intersection is 

The mth intersection ~7;~ is then 

Y v,, = x, "--l + D,dm:. 

Let us write the index of the lowest intersection as fi2, . 

(37) 

(38) 

c Hnvrim < c Hnv,n , 
n n 

for any m such that D, > 0, D, > 0. 
Then one can construct the new vertex and the new edges 

x*” = v;, ; (39) 

-Y d mn = dd42, - x727 
if (D, > 0, m f e,, 

(D, < 0; 

d;, = c&/(x (&,J2)1’2. 
n 

In each iteration, the index m runs over m = l,..., K, m # fit,, fii, ,..., @ii,-, so in 
each iteration one additional value of nz is omitted. 

(iii) After the introduction of all the equalities, in each iteration one inequali- 
ty is imposed by the same algorithm as in step (ii) except that the index m = 5, is 
no longer omitted. The index m = l,..., n; m f fi, ,..., St, . In this way, the 
inequalities for p = v - K + L,..., v are satisfied while some of the previous ones 
may get violated again. In the case of inequalities, the Gz,th edge is needed for the 
next iteration; it equals d;, = d;;l . 

(iv) The program is terminated when one of the following conditions is 
fulfilled. 

(4 E” < E”+*” + E (we take E = 10-6, dv = 10) 
(b) when no inequality violated by more than E is found. 
(c> v > vmrwr , where vmaX is given in advance. 

In the calculation, caution should be taken for divisions with denominators too 
small. If for any F?i, I Cn C,“d& I < E, one must avoid choosing rii = Ei and one 
puts dAi = d&l. If an equality is almost linearly dependent on the previous ones 
(if 1 Cn Cnvd&’ / < E for all m and I By + x,, CnYx;l I < E) it is ignored. If an 



310 ROSINA AND GARROD 

equality is incompatible with the previous ones (if 1 xj C,“d,!&’ 1 < E for all m and 
1 By + x:, CjvgF1 I > c) the calculation is terminated. If an equality happens to be 
satisfied by the point x under consideration (if [ B” + x,, C,txY,-’ I < E but some 
1 x, C,vd&,l 1 > E), then xny = xhl and the new edges are constructed by the 
following trick. XL-’ + sK1 - lOK,,” and then the normal procedure can be 
applied. 

This algorithm has the feature that the function E rises monotonically. 
However, whether it converges and the speed with which it does so depend on 

certain aspects of the sequence of inequalities which are generated. 
This algorithm is an adaptation of the Revised Simplex Method (7). It is designed 

for problems (such as the one considered above) in which one can directly construct 
the most violated inequality from a continuum of inequalities rather than check 
through a finite list of inequalities given at the start of the program. 

1. 
2. 
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